Contact stresses for multiply-connected
Regions - the case of pitted spheres*

K. P. Singh, B. Paul and W. S. Woodward

NOMENCLATURE

Ai; area of cell 7,

a;; coeflicient in eq. (21)

By coefficient in eq. (23)

Ciit distance between field point / and a point in cell St

Cijt distance between field point / and centroid of cell S, ;

d hypothetical interpenetration

dy initial interpenetration of spheres

e’ separation (gap) between corresponding surface points
after load is applied

E Young’s modulus

S(x, y) or f(r) initial separation between surface points

/i S(r) evaluated at field point i

l{ <f;’\'+ 1 —ﬁ
F normal load
F* dimensionless normal load, kF/(R)?
Iin J ddgle

Sij

k elastic parameter
m number of equal sectors in £
n number of cells in Q
N number of annular rings in @
Neon number of cells within radius r,,,
pi{x, ) interfacial contact pressure
i piecewise constant pressure in annular ring /
p¥ dimensionless pressure, kp,
r radius defined from origin of Q
s radius of blending point of pit and sphere

* This research was partially supported by the Federal Railroad Administration of the
U.s. Department of Transportation under Grant poT-05-40093.
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r, radius of curvature at ‘edge’ of pit

Feon radius used in convergence studies

; inner radius of contact region

ro outer radius of contact region

rdg width of cell

Ar length of cell

r* r/R

r¥ ro/R

re re/ R

R effective radius (2R, Ry)/(R(+R2)

R, radius of sphere with pit

R, radius of smooth sphere

Sy region included in ring / between rays j and j+ I
SCF stress concentration factor

v; vector in eq. (22)

x' radius of point 0" in Fig. 2

{x,») Cartesian coordinates in the fixed reference plane
o A¢/2 half-angle of sector

B centroidal radius of sector §;;

é relative approach

o* d/R

0 semi-vertex angle (Fig. 1)

Vis Vs Poisson’s ratio of bodies 1 and 2 respectively

&; inner radius of ring i

p a boundary radius (r; or r,) of the contact region
¢ polar coordinate in fixed reference plane

A 27nfm

Q region of contact

2, region of cell /

QF candidate contact region.

|. INTRODUCTION

Contact problems involving multiply-connected contact regions have
received little attention in the literature, possibly because of the non-Hertzian
nature of such problems. Such problems arise, for example, whenever either
of the contacting bodies have surface pits (e.g. casting defects, corrosion
pits, machining faults, etc.). Barely perceptible surface flaws can cause high
stress concentrations, and consequently, rapid fatigue failure. Experimental
observations by Tallian[1], Martin and Eberhardt[2] and Littman and
Widmer[3] indicate that such surface defects may be potential nuclei of
microcrack propagation and can produce rapid destruction of rolling
surfaces.

Based on the degree of difficulty associated with their solution, these
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problems may be divided into the following two categories:

i. Contact region known a priori:
When the indentor contact surface is flat (or almost flat) it will be called
a ‘stamp’, and the contact surface is defined @ priori by the stamp
boundary. When the indentor surface is not flat, but the indentor has a
substantially higher elastic modulus than the indented body, the
indentor can be treated as rigid, and the shape of the contact region
becomes known for any given depth of penetration relative to the
indentor tip.

ii. Elastic contact problems:
When the indentor is not a stamp, and the two bodies have comparable
elastic moduli, then the geometry of the contact region is unknown
a priori, and it must be determined by solving the appropriate elasticity
problem.

To the best of our knowledge, no solutions to problems of category (ii), for
three-dimensional elastostatics with multiply-connected regions, have been
reported in the literature. However, solution of a few special cases of rigid
indentor problems (category (i)) have been found by Olesiak[4], Parlas and
Michalopoulos[5] and Chiu[6].

Olesiak[4] solved the problem of an annular flat faced-stamp pressed on
an elastic half space. Parlas, et al. proposed the solution for a ‘bolt shaped’
indentor pressed into an elastic half-space with a cylindrical hole. The
cylindrical (bolt) section of the indentor was assumed to be rigidly bonded
to the wall of the cylindrical hole while the bottom face of the bolt head
presses against the half-space.

Chiu[6] solved the problem of an infinitely long rigid cylinder in contact
with an elastic half-space, where the rigid cylinder has a groove running
parallel to its axis.

In this paper, we give results which indicate that problems of both
categories (i) and (ii) may be successfully solved by an extension of the
method introduced by Singh and Paul[7].

A brief synopsis of the simply-discretized method of solution is given in
Section 2, and some limitations and advantages of this method are
discussed in Section 3. The example problem of a pitted sphere in contact
with a complete sphere is described in Section 4. Techniques devised for an
accurate numerical solution and rapid convergence are described in
Section 5. Results for an example are given in Section 6, and conclusions
are reviewed in Section 7.

2. THE SIMPLY DISCRETIZED METHOD OF SOLUTION

Singh and Paul[7] proposed a group of numerical methods for the solution
of frictionless elastic contact problems where the surface profiles of the
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contacting bodies are allowed to have discontinuities in slope and curvature.
One of their solution procedures, called the ‘simply discretized method’, is
briefly recapitulated in this section. For a detailed description of the
theoretical foundation and applicability of the method, the reader is
referred to Singh[8] or Singh and Paul{9].
We will restrict our attention to ‘nonconformal’ contact problems where
the dimensions of the contact region are small compared to appropriate
radii of curvature of the undeformed bodies. Therefore, we may assume that
the contact surfaces do not deviate significantly from a reference plane in
which we imbed fixed Cartesian axes (x, y). Furthermore, we shall consider
only those cases where the two bodies undergo a relative rigid body
translation of amount , in a direction normal to the reference plane, plus
an elastic deformation. The translation & is called the ‘relative approach’
and is positive if it moves the bodies towards one another. We will also
assume that the applied load consists of a force F, acting normal to the
reference plane, and that the contacting surfaces have a sufficient degree
of symmetry that the resultant of the contact pressures on each body is a
force of magnitude F which acts through the origin 0 of the reference plane
and equilibrates the applied force F.

It is well known (see for example Luré[10]) that the fundamental integral
equation for nonconformal contact stress problems is

- p(xl7 y/) dx,dy' _ e
k {'Q [(x—x) + (y—y)*]"2 §+f(xy) =e(xy) )

where the ‘elastic parameter’ k is defined as
1—v2 192

+
nE, nE,

¥/

k = (2

In the foregoing equations, v,, v, and E,, E, denote the Poisson’s ratio and
Young’s modulus respectively for body 1 (indentor) and body 2 (indented);
p(x', ¥) is the normal pressure over the contact surface; Q is the projection
of the contact surface on the (x, ¥) reference plane; f(x, y) represents the
initial separation (or gap) between surface points on the two bodies, located
at the same (x, y) coordinates, before the load F is applied; e'(x, y) is the
separation of the opposed surface points after the load is applied. Fig. 1
illustrates the initial separation f for a case of axial symmetry where /'is a
function f(r) of the radial coordinate r.

The condition of impenetrability of matter requires that ¢’'(x, y) should
vanish inside @ and it should be positive outside of Q. Conversely, the
interfacial contact pressure p(x, y) should be positive inside Q, and it should
vanish identically outside of it. In symbolic terms,

e =0 for (x,y) inside 2 (3a)
e >0 for (x,y) outside of Q (3b)
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p{x,y)=0 for (x,y) outside of 2 (4a)
p(x, ) =0 for (x,y)inside Q (4b)

In short, a solution of the problem requires the determination of the
boundaries of region , a pressure field p(x, y), and an approach § which

SPHERE

SPHERE

Fig. 1. Geometry of pitted surface; f(r) is initial separation

satisfy relations (1)-(4). The associated load may be found from the
expression

F = ( p(x,y) dxdy
02

&

The absence of foreknowledge of the contact region Q is a major impediment
to a mathematical solution. This obstacle is overcome by postulating a
tentative contact region Q*. Singh and Paul[7] proposed that the ‘inter-
penetration curve’ described by

Jx,y)=d 5

be used as a tentative contact region. Equation (5) defines the contour of
the curve formed by interpenetration (without deformation) of the two
surfaces through an arbitrary distance d. Picking a suitable value of d
establishes the candidate contact region Q*. Using this as a preliminary
estimate of Q, equation (1) is readily recognized to be an integral equation
of the first kind. A ‘simply discretized’ numerical solution of equation (1)
is found by subdividing Q into a large number of small cells. The pressure
function p(x, y) is replaced by a piecewise constant pressure field (pressure p,
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in cell 7). Thus if Q is subdivided into # cells, equation (1) becomes

! dx'dy’
kp; [
I e A e

where Q, is the region of cell i. In equation (6), n values of p; and the
constant & are unknowns to be determined. The centroids (x;, y;) of the
cells are taken as field points (x, y) and equation (6) is written for each field
point. The integrals in equation (6) are evaluated by numerical quadrature.
Thus 7 linear algebraic equations are generated. An additional independent
linear equation, essential for a unique solution, is generated by picking up
a field point other than the cell centroids. The choice of this additional field
point is otherwise arbitrary, however, it does affect the quality of the results,
as discussed in Section 4.

Having thus generated a set of n+1 linear equations, the # unknown
pressures, p;, and the approach d, are obtained through Gaussian
elimination. The next step in the solution is to determine whether the
tentatively selected region of integration Q* is indeed the true contact region.
This is done by utilizing the inequalities (3) and (4), and systematically
adjusting the boundaries of Q until these inequalities are satisfied.

—0+flxy) =¢ (6)

3. LIMITATIONS AND ADVANTAGES OF THE SIMPLY-DISCRETIZED
METHOD

Singh and Paul[7] showed that the simply-discretized method just described
is numerically unstable in the general case. This is due to the fact that the
solution vector of the set of linear algebraic equations generated is very
sensitive to small perturbations in elements of the coefficient matrix. Since
such perturbations are unavoidable in the discretization process, the
solution vector tends to be very erratic. Large oscillations in the solution
vector correspond to small perturbations in the elements of the coefficient
matrix. This behavior is similar to that observed in ill-posed problems of
partial differential equations, as discussed by Hadamard[11]. For problems
which do not show axisymmetry (or where axisymmetry is not utilized),
Singh and Paul[7] found that the simply discretized method was incapable
of predicting the proper stress distribution. For such problems they found
it necessary to introduce stabilizing techniques known as the ‘redundant
field point method’, and the ‘functional regularization method’ (see [7,9D.

The amount of numerical computation required for either of the two last
named methods exceeds that of the simply discretized method. Accordingly,
it is desirable to use the latter whenever circumstances permit.

In this paper we will focus on a problem with complete axisymmetry,
and it will be shown that the simply discretized method provides an
excellent solution, provided that the maximum possible use is made of the
symmetry of the problem.
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In other words, we recognize that all cells located at the same radius
from the axis of symmetry have the same contact pressure at their centroids,
and the number of unknown pressures p; is reduced from » (the number of
cells) to N (the number of annular rings formed by an axisymmetric
distribution of cells). By using the simply discretized method, we are able
to utilize inequality (4b) to iteratively refine the region of contact 2. Upon
satisfying inequality (4b), it was invariably found that inequality (3b) was
satisfied.

The nature of the functional regularization method prohibits the use of
inequality (4b) as a basis for refining Q.

Numerical experiments have indicated that iteration procedures based
up on inequality (4b) converge much faster than those based upon
inequality (3b). Further details of the iteration procedures will be found in
Sections 3 and 6.

4. PITTED SPHERE GEOMETRY

As a typical example, contact of a pitted elastic sphere of radius R, with
an unpitted elastic sphere of radius &, is considered. A section of the pitted
surface by a plane through the axis of symmetry is shown in Fig. 1. The
local contour of the pitted surface is idealized as a torus smoothly blended
into a sphere. The blending point P, where the pit joins the main surface,
is located at a distance r, from the load line. The center of curvature 0" of
the pit blending arc lies on the conical surface of semi-vertex angle 0. The
meridional radius of curvature of the torus is r,.

Note that the discontinuity in curvature which occurs at P does not
preclude the use of the method of solution described. A tentative contact

SPHERICAL
PORTION

2 PITTED
X Q.0
o

;
b COMPLET
\ o SPHER E—)\

Fig. 2. Generation of annular interpenetration region
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region, Q, is established by a hypothetical interpenetration of the two
spheres through a distance d. The annulus of contact so formed is bounded
by an inner radius r; and an outer radius r, as shown in Fig. 2, where
suitable coordinate axes r, and z are indicated. The values of r; and ry for
a given problem are determined as follows. The z coordinate of a point
C(p, z,) located at a distance p from the z-axis on the portion of body 1
(see Fig. 2), where

1y <Ty, (73.)
is:
z, = R — (R —r)) cosO — [r2 — (x' = p)*]'? (7b)
where
’ (‘Rl =7 ) rb
=M T b Tc
x X (7¢)
0 = sin~' 1t &)

1

The z-coordinate of a point on sphere 2, located at a distance p from the
z-axis, is given by

zp = d ~[Ry = (R3—pH)"] &)

Since point C lies on both the torus and the lower sphere, z, = z,; thus
equations (7b) and (9) require that

d =Ry —(R,—r) cost —[rZ = (p—x')*]""* + Ry — (R3—p»)'"* (10)
p <ty (]Oﬂ)

Furthermore, the z-coordinate of a material point C' located on the
spherical portion of body 1, at a distance p from the z-axis, is given by

z; = Ry — (R%”PZ)UZ (1
where
(p>1s) (11a)

Hence, for a given interpenetration d, the radius p of a point on the
intersection of sphere 2 and spherical region of body I is given by

d =R, = (Ri—p")'? + R, = (R3—p")'"? (122)
(p>ry) (12b)

The geometry of the toroidal surface indicates that for r, < R, , equation (10)
has two solutions for p. Let p, and p, (p, < p;) be roots of equation (10).
Two cases are readily identified.
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Case i. When both inner and outer radii of the assumed contact region lie
inside the blending radius, i.e.

P2 <Ty (13)

In this case the contact is assumed to be completely confined to the toroidal
segment of body 1, in which case

ri‘zpl (14)
Fo = P2

Case ii. When the outer boundary of  lies beyond the blending radius (as
shown in Fig. 2), i.e.

P2 > Ty (15)
In this case
ry=py

and the outer radius r, is determined from the solution of equation (12).
Note that equations (10) and (12) are transcendental in p, which can be
found by an iterative procedure (e.g. Newton-Raphson).

In order to find the initial separation S(r), shown in Fig. 1, it is only
necessary to find

f0) = z-z, (152

where z, is found from equation (9) with p=rand d=d,; d, is the value
of d corresponding to initial contact as shown in Fig. 1. To find z,, set
p =r and use equation (7b) for points on the torus (r < ry), or equation (11)
for points on the upper sphere (r > 7).

In order to find the initial separation dy, it is necessary to note from
Fig. 1, that when d =d,, the slope of the torus matches that of the lower
sphere at the contact point; i.e.

&z _ dz (15b)
dpdp

where the derivatives are found from equation (7b) and equation (9).
Equation (15b), together with equations (7b) and (9), suffice to find d,,
and the two coordinates (r, z) of the initial contact point.

Having found the boundaries (r; and ry) of the contact region @ and the
initial separation function J(r), we may proceed to solve the governing
integral equation (1).
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5. NUMERICAL SOLUTION PROCEDURE

The contact region @ is subdivided into N annular rings. Since a steep
pressure gradient is expected near the pit, the annular rings near the inner
boundary are very narrow in width. It was also learned from experience
that the peak pressure always occurs at some radius r where r < r,. Guided
by this consideration, a majority of the rings are clustered in the region
r; < r <r,. Exploiting the axisymmetry of the problem, we assume that the
pressure is constant in each ring. The rings are numbered sequentially from
1 to N, from the inside out, and the pressure in the i-th ring is assumed to
be an unknown constant p;. Let £, and &; | be the inner and outer bounding
radii for cell i; thus &, =r, and &y, =r,. Each ring is further subdivided
circumferentially into m equal sectors by drawing (m) equispaced radial
rays from the center of Q; the angle 4¢ between two adjacent rays is 2n/m.
The sector, bounded by radial rays 1 and 2, is shown in Fig. 3.

ADDITIONAL

Fig. 3. Subdivided and labeled contact region (portion)

The region of the sector located in the i-th ring, between ray j and ray
(j+1), is identified as §;;; and its centroidal radius by f;;. Elementary
calculations show that

_ 2sing (EF +EF+E,,E)

i»

S PR RS (16
where
o = /m = A¢p/2 (17

The centroids of the first sector shown in Fig. 3 (i.e. where j=1) are
selected as field points.
Thus for the field point /, equations (6) and (3a) reduce to

N m
kY p ) L Y 5410 =0 (18)

i=1 j=1

i Ciji

273



where f(r) is calculated for r = f,; from equation (15a). ¢;;; s the radial
distance from field point / to the elemental area d4;; located in S,;. For
most cells, the integral in equation (18) may be replaced by the approx mation

ijl:f %ﬂ:ﬂ (19)

where ¢;; is the distance between field point / and the centroid of the
region S;;, whose area is denoted by A4;;. It was shown in Singh[8] that,
in general, equation (19) is a very useful approximation which result; in a
significant reduction of computation time, without compromising the
accuracy of results. However, for regions located in the immediate vicinity
of the field point /, the errors due to the approximation (19) may be
unacceptable. To avoid such errors, I;; is evaluated by numerical
quadrature within cells located near the field point. The criterion which
must be satisfied in order to use equation (19) is

C;jp > max[rd¢, Ar] (20)

In equation (20), rd¢ and Ar are the side lengths of a typical cell. Notice
that when the field point / lies inside the region Sy e j=1, i=1),
¢;;1 =0, and hence the integrand in equation (14) has a singularity. However,
for such cases, an approximate analytical solution for the integral is readily
constructed.

In this manner, N linear equations corresponding to the N field points
are generated. An additional linearly independent equation is generated by
selecting point P’ at the outermost boundary of the contact region as field
point (N +1). The location of this additional field point has a pronounced
affect on the solution, which deteriorates as P’ is moved inside the boundary.
It is plausible to assume that this behavior is due to the gradual increase
in cell width 4r with r (see Fig. 3), which was introduced to keep the aspect
ratio of the cells from becoming excessive. With the cells so designed,
the location of P’ shown in Fig. 3 maximizes the distance between P’ and
its mearest neighboring field point. This in turn tends to maximize the
amount of independent information supplied by the equation written for
field point P’, and should tend to minimize ill-conditioning effects on the
coefficient matrix generated.

Thus (N+1) equations in (N+1) unknowns are generated, and
equation (18) assumes the form

a;p; = —f;+9d 20
and the equation constructed using P’ as a field point becomes,
UJPJ: _fN+l+(5 (22)

where f; is the value of the ‘initial separation’ function f(r) at the field
point 7. fy, is the value of f(r) at P’; and summation from 1 to N is
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henceforth implied over repeated subscripts. From equations (21) and (22),

& may be eliminated to yield

Bip; =1/
where

B = A;—v;
and

fi=Tver—1i

23

24)

(25)

When equation (23) is solved for p;, using Gaussian elimination, the resulting
pressure distribution is usually found to predict negative contact pressures
in the immediate vicinity of the inside boundary, r =r;. The axisymmetry
of the problems enables us to maintain the outside boundary fixed, and
iterate on the inside boundary where the predicted pressure is incorrect.
The iteration scheme is best explained with the aid of the numerical

example given in Section 6.

6. A NUMERICAL EXAMPLE

The following example was considered.
R, = R, = lin.
v, =v, =0

E1 = EZ == 30X106 b/inz

r, = .006in
r, = .00025 in.
The results are presented in dimensionless form. Let
R = 2RiRs
Ri+R,

Then, we define
Dimensionless pressure in ring i, pi° = kp;

Dimensionless load, F* = kE
RZ
Dimensionless distance from origin of @, #* = /R
Dimensionless approach, 6* = §/R
15 =1/R

¥ = r/R

<

(26)

(27)
(28)
(29a)
(29b)

(30a)
(30b)
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Fig. 4 shows the pressure distribution near the inside boundary for the
uniterated solution. The pressure distribution far from the pit agrees closely

¥
px10*
16~
4 UNITERATED
L SOLUTION
12
10+
8 b
UNITERATED FIRST ITERATED
& SOLUTION SOLUTION
41~ BOUNDARY FOR
- FIRST ITERATION FINAL SOLUTION
2+ pA—
o] - !, 4 i +
B I 2.5 3.0 %, o
-2t | FINAL ITERATED
ol I BOUNDARY (ITERATION NO.3}
ol | BOUNDARY
6 ! {SECOND ITERATION}
-gL uITIAL } *
| TRIAL | R= 4"
10| BOUNDARY ¥ . 0.008
L “"" ré = 0.00025
12k i r¥ = 0.002236
» | E = 30x10°Ps|
~-{ G - | Vv =03
~16l ! NOTE SOLUTION OF SECOND
L | ITERATION 1S OMITTED.
p |
- I
-ag} I

Fig. 4. Boundary iteration sequence

with the Hertzian solution for unpitted spheres (not shown in the figure).
However, the pressure in cell # 1 is highly negative. The pressures in the
successive cells are less and less negative, until at point Q, the pressure
curve crosses the x-axis. The shape of the pressure curve readily suggests
the iteration scheme. The new region of integration is assumed to have
inner radius r;=0Q,. The discretized equation set (23) is generated
corresponding to this new region Q, and thus a new pressure vector is
generated (see first iteration, Fig. 4). This new curve also has a negative
peak (weaker than that of the uniterated solution) at the innermost field
point. The new point of intersection is Q,, which defines the inner boundary
of Q for the next iteration. The process is thus continued until all pressures
are positive. In Fig. 4, the third iteration yields the desired solution. It is
found that this solution also satisfies inequality (3), thus qualifying as the
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‘true’ solution of the contact problem. The complete pressure distribution
is shown in Fig. 5. Notice the essentially Hertzian pressure distribution
(corresponding to contact of unpitted spheres) at #* > 6 x107*. Thus the

P x 104
|
6}
5k
Lal . HERTZIAN SOLN FOR TWO
sk SPHERES IN CONTACT
oL . PITTED SPHERE IN CONTACT

1
10

<]

- NG R g N @

i

WITH A SPHERE (N_,=15)

30 % 10°% PS)
R=1"
ri=0.6x%1072
ri=0.25x107°
F* 0.9743x10°8
STRESS CONCENTRATION FACTOR =1{.69

USRS TN TSR NUU OUNNN SRR VAN SR SO SUNEY NS NN SO Y*X!Oa

|

i i i ! 1 L !
2 34 56 7891011121314 151617 181920212223

Fig. 5. Pressure distribution for pitted sphere pressed against a sphere

P 10%
22 -
20F  ri/t, =0.623
gk R-= 1" © SOLUTION FOR A PITTED
r§=0.0015 SPHERE N CONTACT WITH
16+ r¥= 0.006 A SPHERE
f4 - F*=0.760x107°

12 L E =30x10°% PSI
v=03

10 -

8 :\
L HERTZIAN SOLUTION A
FOR TWQO SPHERES

"IN CONTACT

1

i 1 I L H ] 13 )
0 2 4 6 8 10 12 14 16 18 20 22 (% 0°

6
4
2
0

Fig. 6. Pressure distribution for large pit diameter
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effect of the cavity is of a strictly localized nature. However, as the cavity
is made larger (e.g. r;/ro = 0.3) the pressure curve departs completely from
the Hertzian case. For example, Fig. 6 shows a typical pressure
distribution for r;/ry = 0.623, along with the Hertzian solution for unpitted
spheres corresponding to identical values of thrust F.

In order to establish confidence in the solution, it is necessary to study
its convergence with change in the number of cells used. It must be
recognized that it is necessary for the cells to be densely concentrated only
in that region where a high pressure gradient exists. Therefore, for purposes
of convergence studies, we have systematically varied the number of cells

* 3
Puax x 10
1.6F
o %o o o
1.5k o o
1.4F
R,: 1”
1,31 r¥= 0.006
rf=0.00025
1.2k © ry=0.002236
E = 30x10° PSI
1.1k v=0.3
1 H 1 i i H 1 i | i H i | i L

1234 5678 9I101112131415 Neon
NUMBER OF CELLS WITHIN r¥=0.0003

Fig. 7. Convergence of peak pressure with increasing number of cells

STRESS
CONCENTRATION FACTCR
A
1.7~ c 9o IS o
1.6 o o R=1"
*
re= 0.006
1,50 ry=0.00025
ry=0.002236
1.4 E =30x10°PSI
© v =03
! 1 i ) | ] 1 J. L 1 L 1 t i I N
13 | 23456 7 891011121314 15 con
NUMBER OF CELLS WITHIN r£0.0003

Fig. 8. Convergence of stress concentration with increasing number of cells

278



Yol =
or © DATA FOR PITTED
gl SOLUTION FOR TWO SPHERE IN CONTACT
SPHERES IN CONTACT, WITH SPHERE

-
8 R = 2n
5 r¥= 0.002
4 b= 0.004
5 E = 30x10°%PSI

v =03
2

i B

*
10 3 x108

Fig. 9. Load approach relationship
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Fig. 10. The effect of load and r, on stress concentration factor

within a fixed radius r,,. This radius is chosen arbitrarily for each problem
in such a way that the major area of stress concentration lies inside the
radius r,,,. For the example problem considered, r., == .0003. Let N, be
the number of rings located within radius r.,. Fig. 7 illustrates the
convergence of the peak pressure, pk . Fig. 8 shows the convergence of
stress concentration factor with N, . Stress concentration factor (SCF) is
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defined as the ratio of the peak computed pressure to the peak pressure
for unpitted spheres under equal thrust. Notice both Figs. 7 and 8 exhibit
convergence for N, > 8.

The load-approach curve is shown in Fig. 9. It is obvious from Fig. 9
that the compliance characteristics of the balls (with small pits) remain
essentially the same as that predicted by the Hertzian solution.

Fig. 10 shows scr as a function of cavity edge radius »¥. Smaller values
of r* cause greater stress concentration. Due to the nonlinearity of the

problem, the scF is also a function of the applied load F*. Table 1 shows

Table 1. Dependence of stress concentration factor on r,

Case No. rEx 103 SCF F*x 108 Jx 10* r¥x10?
1 0.25 1.692 0.9743 0.1023 0.1845

0.35 1.856 0.9737 0.1029 0.2753
3 0.50 2.049 0.9702 0.1041 0.4166

R=1", r¥=0.006, r¥ = 0.002236, E =30 105 psi, v = 0.3

the variation of scF with the size of the pit (measured by blend point radius).
Notice the SCF increases with increasing value of r¥. This variation of scr
with r; may be related to the loss of load carrying area.

The computer program developed to solve this problem is moderately
efficient. For example, the nine cases, needed to generate Fig. 10, required
an average running time of 10 minutes each on the 18M/360/65 computer,
corresponding to $8.33 per case, with N = 34 nodes per case.

7. CONCLUSIONS

A non-Hertzian elastic contact problem involving an unknown multiply-
connected contact region has been solved. The example problem considered
is that of a pitted sphere in contact with an unpitted sphere. The axi-
symmetry of the problem enabled us to use the ‘simply-discretized method’
with a polar coordinate grid. For problems with a lower degree of
symmetry, it had been found in earlier work, that a more complicated (and
less efficient) method of solution was necessary because of the numerical
instability of the equations generated. It may be appropriate to describe
the equation set (23) as ‘quasi-stable’ because it exhibits dependence on the
location of the (N4 1)th field point. Through experience and heuristic
reasoning, it was established that locating the additional field point
(P’ in Fig. 3) at the outside boundary yields a well-conditioned matrix.
The variation of the scF, contact region Q and peak pressure p¥,, with
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changes in the pit blending radius rj, and the pit edge radius r¥ was
studied, and some numerical results were presented.

The numerical solution was shown to converge rapidly with a moderate

cell density.

To the best of our knowledge, this is the first published solution of a

multiply-connected contact region problem with a priori unknown contact
boundary.
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