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Elastic Contact Problems

A general method for the numerical analysis of frictionless nonconformable non-

Hertzian contact of bodies of arbitrary shape is developed. Nuwmerical difficulties arise

and

because the solution is extremely sensitive to the manner in which one discretizes the
governing integral equation.

The difficulties were overcome by utilizing new technigues,

referred to as the method of redundant field points (RFP) and the method of functional

Burton Paul

regularization (FR).
thoroughly against known solutions of Hertzian problems.

The accuracy and efficiency of the methods developed were tested
To illusirate the power of

the methods, a heretofore unsolved non-Herizian problem (corresponding to the case of
rounded indentors with local flat spots) has been solved.

1 lIntroduction

THE three-dimensional problem of contacting, non-
formal,? elastic surfaces was solved by Hertz [8]% for the re-
stricted class of surfaces which are quadratic (i.e., second degree
polynomials) near the contact point. However, the Hertz theory
is inadequate to freat the wide variety of technologically im-
portant problems where the surfaces cannot be modeled as
locally quadratic. Problems of this type arise in roller bearings
with ecrowned (i.e., rounded) edges, in ball bearings with small
corrosion pits, in loosely fitted pin joints, ete.

In this paper, we will establish numerical techniques for the solu-
tion of contact stress problems with frictionless surfaces that are
noneonformal, but otherwise arbitrary. When the surfaces are
not quadratic, we will eall the problem “non-Hertzian.”

An attempt to solve for the particular problem of fourth degree
paraboloids in contact was made by Mow, Chow, and Ling [13]
who admitted to only partial success. An earlier attempt by
Cattaneo [1] for the special case of axisymmetric surfaces is
briefly described by Lubkin [11].

! Part of a dissertation submitied by K. P, Singh as partial fulfill-
ment of requirements for the Degree of PhD at the University of
Pennsylvania.

2 Curved surfaces are said to be nonconformal if all dimensions of
the contact region £ are small compared to the smallest radius of curva~
ture of any normal section of the surfaces. Initially flat surfaces
(stamps) will not be considered.

3 Numbers in brackets designate References at end of paper.
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More recently, Conry and Seireg [2], and Kalker and Banden
[9], proposed numerieal solutions to the contact problem using
optimization techniques. These solutions appear to predict the
compliance quite well, although the contact area and pressure dis-
tribution may not be determined accurately.

There is a wide literature (Luré [12]) dealing with flat-faced
indentors (or stamps) wherein the contact area is known a priori.
Although we specifically exclude such problems in this paper, we
are indebted to a referee who pointed out the existence of the
paper by Conway, et al. [3], which deals mainly with flat indentors,
but does eontain a brief discussion of the infinitely long circular
cylinder indenting an elastic slab of finite thickness. This
problem, which reduces to a Hertz problem for infinitely thick
slabs, was solved by a method utilizing a stepwise constant pres-
sure field, but differs in all other significant respects from the
present paper.

In Section 2 of this work we reformulate the non-Hertzian con-
tact problem, and introduce the eoncept of a family of “inter-
penetration curves’” which serve as first (or final) approximations
to the boundaries of the contaet region .  This formulation leads
to a singular integral equation of first type, which may be dis-
cretized in a manner described in Section 3. Since solutions to
integral equations of the first type do not necessarﬂy exist for any
given kernel, small numerical errors can produce completely
meaningless solutions, and attempts at a direct numerical
{(“simply diseretized””) solution are beset with difficulties. Such
problems are reminiscent of the ill-posed problems, discussed by
Hadamard [7], whose solutions do not depend continuously on the
numerical data given. Fortunately, however, the problem is
“properly posed’ in the sense of Tychonov [19, 20]. This means
that the problem makes sense physically, and a physically mean-
ingful solution can be obtained despite the extreme sensitivity of
the results to small deviations in the input data. Two methods,
namely, the “Functional Regularization Method”” (FR method)
and “Redundant Field Point Method” (RFP method) are de-
veloped to overcome the numerical difficulties in the solution
procedure.
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The RFP method, described in Section 4, enables one to find
the contact region, the pressure distribution and the approach
with great accuracy. Numerical studies in Seetion 5 show that
the RFP method also furnishes accurate determination of the
pressure and the approach, but it may not predict the contact re-
gion with high precision. However, the RFP method provides
a computationally fast and inexpensive means for obtaining the
load versus approach relation.

The FR method, developed in Section 6, is shown to predict
extremely accurate results even where the RFP method is in-
effective.

Confidence in the numerical predictions of the RFP and FR
methods is established by comparison with the known theoretical
results for Hertzian problems. These methods are then applied,
in Section 7, to a non—Hertaan problem, for whieh no theoretical
solution is known.

2 Formulation of the Confact Problem

Let the two bodies be denoted as body 1 and body 2. Car-
tesian coordinate axes are set up for each body with the initial
contact point as common origin.  Axes (zi, i) and (z2, y2) lie in
the tangent plane of the two surfaces at the initial contact point,
with z; and 2z, pointing into bodies 1 and 2, respectively. Both
surfaces are frictionless and the external load is assumed to con-
sist of a pair of compressive forces, 7, along the axes of z; and 2.
Due to the applied force, material points in the two bodies
undergo rigid-body translation and elastic deformation. For
points on the surface of the body, it can be shown from geometric
considerations (see, for example, Luré [12, p. 320]) that

wtwe o — 020 (1)

where w; and w, are elastic displacements in the directions of 2,
and z:, and 8 is the relative approach, defined as the displacement
of a point on one of the bodies, relative to a point on the second
body, where both points are far removed from the contact region.

For those points which coalesce within the contact region, it is
required that

w A w2 =0 (2)

Outside of the contact region, the condition of impenetrability
requires that

wy Fw bz —6>0 3)

For the class of problems under consideration, the dimensions of
the contact region are assumed to be very small compared to
local radii of curvature of the indenting surfaces. Hence it is
permissible to consider the two bodies as elastic half spaces in
order to correlate the displacement field w with the pressure field
p inside the contact region 1. For points on the frictionless
surfaces of the bodies, w and p are related by integrating the
Boussinesq solution for a normal point load, which leads to the
following equation (Timoshenko, {17, p. 365]):

wilz, 1) (1 -2 p(I y' )da'dy’
T, Y = 17y
/ 7E; e — 22+ oy — gy

e =12

4)

where v; and E; are Poisson’s ratios and Young’s moduli of the
two bodies, and £ is the projection of the contact region on the
tangent plane (zy). Because the two bodies cannot exert tension
upon one another, a physically meaningful solution requires that

plx, ) > 0 inside (5)

Conditions (2)-(5) define the contact problem which must be
solved to obtain the pressure field p, contact region £ and ap-
proach § for a given normal force F. Equilibrium requires that

F =fpdA (6)
2
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The contacting surfaces may be described a priori by equations
of the form: 2z: = filz, ¥); 22 = fulxr, y). The relative initial
separation defined by

flz,y) = 2 + 2 = filz, y) + felz, v) (7)

will be called the “profile funetion.”
may be combined to yield
y"dz'dy

pdA pl@’, v )dz'dy’
k — = ] - very;
r oll@ — a4+ gy — y')

where the “elastic parameter” is defined by

Equations (2), (4), and (7)

=0 —flz,y) (8

ko= (1 — V12)/7FE1 -+ (1 - ng)/ﬂ'Eg

The half-space assumption originally employed by Hertz to cor-
relate the displacement and pressure fields has been supported by
various experimental investigations including some by Hertz
himself. Experimental work by Fessler and Ollerton [5] indi-
cates that this assumption is accurate for those Hertzian contact
problems where the semimajor diameter of the contact ellipse is
as large as half the smallest radius of curvature of either body.
For non-Hertzian problems such bounds are not known to the
best of our knowledge, but it is reasonable o assume that the
assumption will be valid so long as the surfaces are nonconformal.

A principal difficulty in solving non-Hertzian contact problems
is lack of a priori knowledge of the contact region, which is to be
used as the domain of integration in equation (8).

In this work, we introduce a means of establishing a suitable
family of closed curves which represent the contact boundaries
for a given pair of body profiles. The pressure distribution, asso-
ciated load, and approach are then computed. This procedure
inverts the usual formulation of the problem where the load (or
approach) is assumed given and the contact region is unknown.

To aid us in establishing the contact boundary for a given pair
of indentors let us introduce the concept of the “interpenetra-
tion curve.” The interpenetration curve is defined as the inter-
section of the two (undeformed) indentor surfaces if the vertex
of the body 1 is moved along the axis z,, through an arbitrary dis-
tance d. INote that such an interpenetration is strictly concep-
tual and violates the condition of impenetrability of solid ma-
terials. Different choices of the parameter d (henceforth
called “interpenetration’) give rise to the family of interpenetra-
tion curves described by the equation

H, y) = fils, y) + folew, y) = d 9

which represents the projection of the space curve of intersection
onto the tangent plane at the contact point.

The family of interpenetration curves may be thought of as
candidate contact boundaries associated with some family of ap-
plied loads. In the case of axisymmetric contact problems (e.g.,
arbitrary coaxial bodies of revolution, or two cylinders of equal
diameters with their axes at right angles) the contact area is
necessarily a circle and so are the interpenetration curves; i.e.,
circular interpenetration curves constitute a valid family of con-
tact boundaries for a set of normal loads which remain to be de-
termined.

When the interpenetration curves are not circles, they will not
in general represent any member of the family of true contact
boundaries. For example, in the general case of Hertzian con-
tact (indentors are locally approximated by second degree sur-
faces), both the interpenetration curves and the contact bound-
aries are each represented by a family of similar ellipses; however,
the aspect ratio of the two families differ, as shown in Singh [15].

For cases where the interpenetration curves do not match the
true contact boundaries, they provide the basis (as will be shown)
for an iterative procedure which rapidly converges to the true
solution. Furthermore, it will be seen that, even if one does not
refine the interpenetration curve by iteration, there results an ex-
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cellent approximation to the load versus approach curve, and to
the peak contact pressure.

3 Simply Discretized Numerical Solution

For an arbitrary choice of parameter d, equation (3) provides a
(possibly tentative)* candidate contact boundary surrounding
the region Q. For the “known’’ contact region {1, equation (8)
becomes s singular integral equation of the first kind in two di-
mensions with a singularity in the kernel at point (z, y) = (&,
¥'). We now consider that the approach 8, and contact pressure
plz, y) are dependent variables, to be solved for the particular
contact region £ associated with the arbitrary choice of interpene-
tration d.

The operators in equation (8) must be discretized for a numeri-
cal solution. For this purpose, the contact region O is sub-
divided into n cells, each of which is given an integer label 7 {(as
in Pig. 1). For convenience, these cells may be rectangular® in-
side the boundary, and may be polygonal at the boundary which
is approximated by straight line segments. The centroids (z;, 1)
of the cells are considered “‘“field poinis,” and the pressure in each
cell, is considered to be a constant p;. The double integral in
equation (8) is evaluated, for each field point, by iterated nu-
merical quadrature, resulting in a linear algebraic equation in all
of the p, and the approach 6. Iquation (8) is valid for each of
the n field points. A singularity occurs in equation (8) at the
field point 7 where (z;, y;) = (&, y'). The singularity is treated
by isolating cell 7+ and expressing the integral of 1/r, over the
polygonal cell 4, in terms of elementary functions. Thus for the
sth field point, equation (8) yields

. f @AM +ES P f @Ay =5 -5,  (0)
A Aj

=1
!

where A, denotes the region of eell 7, and f; is the value of the pro-
file function at (x;, ¥;). To a first approximation,

I = f dA/r = Aj/r, (7 ## 1) (11)
A

where 7;; is the distance between field points i and j. It is shown
in Singh [15] that a more accurate evaluation of the integral
(equation {11)) entails considerably more computation and does
not significantly improve the accuracy of the solution.

Since equation (10) is valid for every one of the n field points, n
linear algebraic equations in (n -+ 1) unknowns (n pressures p;
and the approach &) are generated. These equations are of the
form

4 Until further notice we will assume that equation (9) describes a
true'contact boundary. Methods of refining © are described later.

5 Tt is shown by Singh [15] that the minimum discretization error
oceurs when the rectangles are squares.
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bijps = 8 — fi o M) (12)

{where summation over the repeated index for the appropriate
range is implied in equation (12) and all subsequent equations).
An additional independent equation is requited to uniguely
solve for the (n + 1) unknowns of the problem.
To generate this equation, equation (8) is discretized at a con-
venient additional field point (for example, at the initial contact
point), thereby providing the additional refuired equation:

Vip;, = 8 = fan

Equation (13) may be used to eliminate § from equations (12),
thereby producing a system of the form

(i=1,2..

(13)

Bupi = F., R (14)

where By = by — Vi, and F; = fau — fi. Equations (13) and
(14) can be solved, in principle, to give what will be termed a
“simply discretized” numerical solution. However, it will be
found that such simple solutions are defective, because of the ill-
posed nature of the problem, hence a direct solution of equations
(14) will be found to yield nonsensical results. To illustrate this
numerical sensitivity, consider the following problem.
Two spheres of radii £ and R are pressed together
1t is recog-
The pro-

Example 1.
by a force I acting along the initial line of certers.
nized from symmetry that the contact area is circular.
file function (defined by equation (7)) is given by

F) = flr) + fulr) = B

— (Rt — 2]k Ry — [ReE — 7Y (15)
and the “quadratic approximation” to equation (15) is
)y = (2/2) (™ + ) (16)

where 7 is distance of the field point from the center of the con-
tact circle. Taking advantage of symmetry, we need only to sub-
divide one quadrant of the contact area into small cells. Figs.
2(a~c) show some possible mesh arrangements. For an assumed
interpenetration d, the radius e of the contact circle is given by

equations (9) and (16) in the form
[ 2dRRy Y
TR+ R

l~a2 1 i '
=9 \R TR,
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Let Bi = E» = E, and let n denote the number of cells per
quadrant. For the case of n = 4, Fig. 2(a), the solution of equa-
tions (13) and (14) is found without any diffieulty. The load
versus approach prediction is shown by the squares in Fig. 3.

All subsequent numerical results will be expressed in terms of
the following nondimensional quantities:

Approach: 6% = §/R; Semidiameters:
a* = a/R, b* = b/R
Interpenetration: d* = d/R; Pressure:
p* = kp
Radius: r* = r/R; Force:
F* = kF/R?
Coordinates: z* = z/R, y* = y/R,
where, in general
BV = (1/4)ru™ 4 ra™ + ra ™ A+ ) (1%8)

In equation (18) 7y, 712 are the principal radii of curvature for
body 1, and ra, re are those for body 2.6

Note that the predicted relationship between load and approach
is in excellent agreement with Hertz’s analytical solution shown
by the solid curve. Although the load versus approach relation
is predicted excellently, the individual values of load and ap-
proach for any assumed contact radius are not predicted quite as
accurately, being in error by 10 percent, typically.

From the foregoing results we are encouraged to try a some-
what finer mesh division. Iowever, at the next higher cell
density, n = 9, Fig. 2(b), the ill-posed naure of the problem in-
validates the simple solution. The pressures at some field points
turn out to be negative which is not acceptable.

When first confronted with the numerical difficulties of the
simply discretized method, we suspected that the system of
equations was ill-conditioned. Upon investigating all the com-
mon sources of ill-conditioning [15] it was concluded that the
difficulties cannot be cured by the usual treatments (e.z., scaling
techniques, or carrying sufficient digits to control roundoff
error). In fact, the difficulties are due to the inherently ill-
posed nature of the problem and require unusual remedies. We
have devised two methods to overcome the numerical difficulties;
the first of these, the “Method of Redundant Field Points”
(RFP) is described next, and the second, the method of “Func-
tional Regularization” (FR) is described in Section 6.

4 Method of Redundant Field Points (RFP)

Since extremely accurate solutions of the simply discretized
equations (13) and (14) produce physically meaningless results,
we are led to believe that the fault lies in the discretized equations
themselves. Apparently, the method of discretization used has
introduced significant errors in the coeflicients of the algebraic
equations. An attempt to reduce the errors by using more ac-
curate quadrature formulas than those described in Section 8 did
not produce a significant improvement in the results. Therefore
we looked elsewhere for the source of errors, and reasoned as
follows.

Tach linear equation of type (12) has errors in the coefficients
bi;. I we exactly solve n such equations for n unknowns, we
get the solution to some problem other than the desired one.  If,
however, we formulate more than n equations of type (12) there
is a possibility that the errors in b;; will be of a random nature.
Hence a suitable “averaging” of the redundant coefficients by,
may result in a cancellation of the random errors. Such an
“averaging technique,” of course, is the well-known method of
least squares used for eurve fitting of experimental data. There-
fore, we are motivated to generate m redundant linear equations

& The definition (18) is introduced for later convenience: in this ex-
ample B = B = R
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{in the » unknowns p,) corresponding to a discretized version of
the integral equation (8) for m additional field points (z, y).
Having found (m + n) approximate equations in the » unknowns
p:, we take an “experimental’” point of view and seek that solu-
tion set p,, which “best satisfies”” (i.e., in the sense of least-square
error criterion) the (m -+ n) approximate equations.

One convenient way to generate the m redundant equations is
to utilize the nodes of the cells (previously we used the centroids
of the cells) as field points in equations (8). Accordingly, equa-
tion (14) takes the form

Bip; = Fy; vt =1,2,3..., 0+ m (19)
The mean-square error € is thus seen to be given by
(n + m)e* = (Byp; — F X Buyp, — Fi) (20)
For a minimum of €? it is required that
(n ++ m)(0e/op1) = 2B;Bip; — 2ByF; = 0
l=1,2,..,n (21)

The solution of equation (21) amounts to solving the matrix sys-
fern

(Dlip} = [BI7[Blip} = [(BI7{F} (22)
Equation (22) is readily solved using Gaussian elimination.

Various Hertzian contact problems were solved by the method
just described.  These problems with known solutions served as
test cases for the RFP method. The load versus approach curves
for the many cases investigated showed excellent agreement with
the analytical answers, even for coarse meshes.

Example 1 was solved using this method. Fig. 3 shows the
predicted load versus approach relation for the mesh arrangement
shown in Fig. 2(b) (recall that the simply discretized solution
broke down for this meshwork). It is seen that the agreement
with the Hertz solution is excellent. Fig. 4 shows the pressure
as a function of distance from the origin, together with the
Hertzian solution. Note the excellent agreement, despite the
use of a coarse mesh. This method is extremely fast as well as
accurate. For example, obtaining the pressure field, approach,
and resultant load for any given contact radius takes less than 5
sec of computation time’ for solving Example 1 using the mesh
arrangements of Figs. 2(a, b).

The accuracy of the load-approach relation and the computa-
tional efficiency of the RFP method makes this method extremely
attractive for the determination of the load versus approach rela~
tion for non-Hertzian problems. Furthermore, this method has
been found to produce quick convergence to the true contact
area for a wide range of Hertzian problems. This i$ discussed in
detail in the next section.

As in all numerical methods, we expect the solution aceuracy to
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improve with decreasing cell size until roundoff errors® dominate
the process and cause a deterioration in accuracy for cells which
are smaller than some optimum length. Because of the physi-
cally ill-posed nature of our problem, this deterioration ean occur
for a relatively coarse cell size, and we need some internal mea-
sure of solution accuracy.

Accordingly, the von Neumann-Goldstine [14] “condition eri-
terion’” is used to test the matrices [D] appearing in equation (22)
for any given cell size. This eriterion states that the “condition”
of a matrix [D] is related to the product of the Euclidean norms
[D|] and ||D~Y|.  Since our matrix [D] is symmetrie, it may be
shown [6, p. 142], that

HDH HD—-lH = ﬂmax/#min = [

where Umin and fmax are the largest and smallest eigenvalues of
[D]. The smaller the value of the condition number 7, the bet-
ter the condition of the matrix [D].

Numerous tests [15] have shown that solution aceuracy of the
RFP method improves with decreasing cell size until the mini-
mum condition number L is reached, thereby defining the opti-
murm cell size for a given problem.

In the case of Example 1, the optimum cell size was found to
correspond to Fig. 2(b). The “solution’ for a denser cell lay-
out such as Fig. 2(c) is found to have greater error than the
“optimal solution,” when compared with the analytical solution.

(23)

3 Application of the RFP Method to Problems
With Noncircular Confact Regions

It is shown in Singh [15] that the interpenetration curves will
not necessarily coincide with nonecircular contact boundaries.
However, the interpenetration curve encloses a region % which
may be used as an initial estimate of the contact region.

In some instances, it may be desirable to determine { with
greater accuracy. This can be accomplished by using an itera-
tive scheme. At any point (zy, y.) which is outside of, but near
the contact region, condition (3) and equations (4) and (7) re-
quire that

o =k . pla!, y'ydz'dy’
s e =2+ e =y

4

7, = 0+ fla, y) >0 (24)

Note that field points (z;, y:) which lie outside of the contact
boundary do not produce a singularity in the integrand of equa-
tion (24). Therefore, the integral shown in equation (24) can
be readily calculated by means of equation (11}. Having ob-~
tained {p} based on Q% equation (24) is used to examine the sign
of ¢’ for selected points in the immediate vicinity of the contact
boundary. If some ¢ twrns out to be negative, then it is neces-
sary to examine more points further out from the assumed
boundary. The locus of points where ¢ becomes positive defines
a new tentative region ;. The boundary of the new contact
area, b, is taken as the mean boundary between &, and Q%
Based on this new contact area, new |p} and |8} are found, and
the iteration is continued until condition (24) is satisfied at all
points in the immediate neighborhood of the contact area £,

In numerous trials, this scheme showed very rapid convergence,
and normally no more than 2 or 3 iterations were required. The
following two Hertzian contact problems illustrate the method:

Example 2. Circular eylinders with radii Ry, and R = 108,
have their axes at right angles, Fig. 5. The cylinders have equal
elastic properties. Using Hertzs solution (Love, [10]), we find
that the aspect ratios of the interpenetration and contact ellipses
are quite different; namely, 3.16 and 4.53, respectively.  All nodes
in the first quadrant except those at the boundary were used to
provide the redundant field points.

The computed load versus approach relation based on 0%
shows reasonable agreement with Hertz's solution, Fig. 5. This
illustrates that the interpenetration curve can be an excellent

8 All numerical work was done with IBM 360 double precision
arithmetic, Le., approximately 16 significant decimal digits.
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Fig. 6 lteration on contact region; Example 2

Tabie 1 Comparison of RFP method with Hertz’s analytical solution
RFP Percent
Quantity method Hertz error
5% 0.7961 X 10¢ 0.7961 X 107% 0 {assumed)
Pl 0.3101 X 10-° 0.3178 X 1078  2.42
a* 0.0171 0.0170¢ 0.589
b* 0.00388 0. 00380 2.17¢

¢ Bstimated from graphs in Cooper [4].

basis for determining the load versus approach relation, even in
extreme situations where Q2% differs significantly from the true
contact region.

The iteration scheme just described converged in 3 iterations
to a contact ellipse which is extremely close to the Hertzian solu-
tion, Fig. 6. Fig. 5 also shows the load-approach curve corre-
sponding to the iterated contact boundary. Table 1 shows how
the RFP method compares with Hertz's analytical solution for
one typical approach value.

Solutions of comparable accuracy were obtalned for increas-
ingly slender contact ellipses. Accuracy was found to fall off
significantly for contact ellipses with aspect ratios in excess of 10.

Numerical studies, for decreasing aspect ratios of {, show that
the predicted load versus approach relationship is always excel-
lent. However, the iterations will not converge to the true con-
tact region if the latter Is nearly cireular. Note, however, that if
the contact region is known to be exactly circular, as in Fxample
1, the RFP method is adequate in all respects.

Therefore we see that the RFP method is extremely efficient
and accurate when restricted to a well-defined range of appliea~

tions.  Outside of this range it iz necessary to utilize another
technique. Such a technique, the FR method, will now be
described.

Transactions of the ASME



6 Functional Regularization Method

Qutside of the range where the RFP method is applicable it is
found that an infinite number of apparent solutions exist, in the
sense that they satisfy equations (13) and (14) within extremely
small residuals. Of these apparent solutions, only those which
satisfy inequalities (3) and (5) are acceptable. In addition,
we note that the class of problems under consideration requires
that the variation in p along any straight line within any simply
connected contact region must not oscillate violently.® This
observation enables us to utilize the notion of a quasi-solution
and the functional regularization scheme developed by Tychonov
[18-20]. The particular variant of the ¥R method employed
here has not vet been treated in the literature to the best of our
knowledge. Assume that the cells in Fig. 1 are numbered se-
quentially from left to right, and from the bottom up for any given
simply connected contact region. Let the cell number of the
rightmost cell in row ¢ be given by m;. If there are ¢ rows and a
total of n cells, then m, = n. Consider the auxiliary function ®
given by k

q mi—1

2= 3

j=1li=mg-1+1

(pe — pin)? (25)
where my = 0.

$ is nonnegative and is zero (minimum) when all components
of p in each row are equal. It is readily recognized that, out of a
set. of candidate {p} vectors which approximately satisly equa-
tions (13) and (14), that which has the smoothest variation (i.e,,
least mean-square point-to-point deviation) along each row of
cells will make @ a minimum. If desired, we could find the exact
solution of equation (14). Unfortunately, the elements of [B]
are inexact, and therefore the exact solution vector {p}, is not the
one we seek. Some elements of { p} . may be negative, and neigh-
boring elements of {p}. may vary excessively. We seek to
satisfy equation (14) in an average sense while keeping the point-
to-point deviation in elements of { p} reasonably small. In other
words we seek a vector §p§ which does not satisfy equation (14)
exactly but keeps € Z [Bip;, — Fi* small, and simul-

7
taneously keeps the auxiliary function' ® small. This will have
the effect of “fairing”’ the p surface, and prohibiting large oscilla-
tions in p.  Hence we seek a minimum of

Yip:) = (Baps — Fi)(Bip; — Fo) + AP

(26)
where A is a suitably chosen small parameter. This implies solv-
ing the equation set

- 9

ZBijBizpj + }\(D@/Iapl) = ﬁBizFi l Ly e e ey (27)

1, n

The following guidelines for a suitable choice of A were estab-
lished in (Singh [15], Singh and Paul [16]).
Let the relative error €; be defined by

e = ||[IDI{p} — BTN BT ]

We can keep €, smaller than some tolerance TOL if A is chosen
such that

(28)

A > e TOL/4 (29)

9 Recall that the principal radil of curvature for the indenting sur-
faces must be large compared to the largest characteristic dimension
of the contact region; this prohibits singularities in the pressure dis-
tribution, or excessively steep pressure gradients.

px10®(psi)
25p
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05+
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where min 18 the numerically smallest eigenvalue of the sym-
metric matrix [D], and is readily found by standard techniques
such as Rayleigh’s method. In practice we have had no dif-
ficulty in choosing TOL in range of 10410 1072

The numerical procedure is to choose the smallest value of A
consistent with condition (29), and to solve equation (27) for
{»}.

The FR method was successfully applied to the examples dis-
cussed in Sections 4 and 6. Table 2 summarizes the numerical
solution using the FR method for Example 1 with the mesh ar-
rangement of Fig. 2(c), and the value A = 0.0133. Itshould bere-
called that the RFP method would not work with so fine a mesh-
work.

Fig. 4 shows a typical pressure distribution. It is seen that the
agreement with the analytical solution is excellent.

In order to further test the FR method, we solved a number of
Hertzian contact problems with contact ellipse aspect ratios: 1 <
a/b < 10. In all cases, complete convergence to the true con-
tact region was achieved (within a tolerance specified as 0.05 of
the semiminor diameter of the contact ellipse). It was stated in
Section 5 that the redundant field point method could not pro-
duce good convergence to the contact boundary for aspect ratios
close to 1, even though the load versus approach relation is in
excellent agreement with the analytical solution. On the other
hand, the functional regularization method handled all aspect
ratios with equal ease, and the convergence to the contact bound-
ary was always found to be fast (normally 3 or 4 iterations were
required). Some numerical results for test cases may be found in
Singh [15].

7 A non-Hertzian Gontact Problem

To illustrate the generality of the method developed in this
work, a non-Hertzian problem is solved in this section.

Example 3. Consider two surfaces given by

o = Aard; 20 = Agrd (30)
where r = (22 + y2)/%  The interesting feature of this problem
is that the contact profiles are extremely “flat’ (i.e., the radius
of profile curvature is infinite at the contaet point), as shown in
Fig. 7. The surfaces are loaded by a force F along the axis of
symmetry.

It is readily recognized that the profile function f(z, ¥) = & +

Table 2 Comparison of FR method with Hertzian solution, numerical resulis for Example 1 (Fig. 2{c}, 33 cells)

d* X 102 a* X 10° 8% > 108 Fx oo 100
Interpenetration (Contact radius) Pred by FR method Soln by Hertz Pred by FR method Soln by Hertz
0.01 1.0060 0.1982 0.2 0.8464 0.8488
0.4 6.325 7.927 8.0 214.1 2148
0.8 8.944 15.85 16.0 605.5 507.3
1.0 10.0 19.82 20.0 846.2 848.8
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2z cannot even be approximated by quadratic terms in the z and
y-coordinates. Hence the Hertzian theory is not adequate to
solve this problem.

From symmetry, it is apparent that the contact region is circu-
lar. For an interpenetration d; the radius of the interpenetration
circle a, follows from equations (9) and (30)

a = [d/(A + Ay 31)
The coefficient matrix [B] and profile function vector {F} of
equation {14) are generated in a computer program in the same
way as for a Hertzian problem. Both the RFP method and the
FR method were used to solve this problem for £, = F, = 30
X 108 psi, v = vy = 0.3, and Ay = Ay = 1 in."%  Fig 7 shows
the pressure distribution and Fig. 8 shows the load and the con-
tact radius versus the approach. The solutions predicted by
both the RFP and the FR methods are in close agreement.

The “dip” in the pressure distribution, near the axis of sym-
metry, can be explained by the fact that the virtually flat central
region is surrounded by a region of a relatively high curvature
which serves as an effective “edge” on a flat punch. We would
expect to see the contact pressure peak in the neighborbood of
such edges.

Solutions for other non-Hertzian contact problems will be
found in Singh [15].

8 Conclusions

A general three-dimensional theory of frictionless noncon-
formable non-Hertzian elastic contact has been developed which
may be effectively used to analyze the stress concentrations and
deflection patterns for almost arbitrary contacting profiles (which
may include cavities, curvature discontinuities, ete. ).

Because the governing integral equation of the first type is
physically ill-posed, but is well-posed in the sense of Tychonov,
we found it necessary to develop two new solution techniques.

The Redundant Field Point (RFP) method is efficient, and has
built-in checks to define its range of applicability.

The Functional Regularization (FR) method has a wider range
of applicability, and will suffice for most practical ecalculation
needs. )

Both methods were tested agalnst known theoretical solutions
for Hertzian contact problems, and were found to be extremely
accurate in their respective ranges of applicability.

As an example of the power of these new numerical methods, a
heretofore unsolved non-Hertzian contact problem was solved.
Additional non-Hertzian problems have been solved by the
methods of this paper, and are described in Singh [15].
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