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1 Introduction

From a structural viewpoint, the bolted joint is perhaps the most
vulnerable region in a heat exchanger. Whereas few pressure vessels
are known to fail by elastic buckling, bursting, or plastic collapse,
“leaky" joints are not too infrequent. This fact was not lost on the
researchers in the early stages of the inception of pressure vessel
technology, as is evidenced by the number of significant contributions
on this subject in that period {1].! Of numerous excellent articles on
this problem, special mention is due to the work by Waters, et al. [2]
which gave the general basis for the design rules in the ASME Code
{3]. In their bid to develop design rules of manageable numerical
tedium, Waters, et al., assume that the bolt stress does not change due
to pressurization of the joint. Thus, in essence, the stress in bolts under
the operating conditions cannot be determined by this method, even
a8 the ASME Code (3, p. 328] prescribes a limit on the “service
stresses.” Evaluation of the service stresses is important to determine
the f‘atigue life of bolts in bolted joints subject to pulsating operating
pressures.

1 Nlm;ben in brackets designate References at end of paper.
wponmbuwd by the Nuclear Engineering Division and presented at the

wnter Annual Meeting, Atlanta. Ga., November 27-December 2, 1977 of THE
AMERXCAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript re-
ceived at ASME Headquarters August 3, 1377. Paper No. TI-WA/NE-6.
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Leakage in U-Tube Heat
Exchangers
Partl:  Analysis

“Three element bolted joints,” consisting of an unstayed tubesheet sandwiched between
two tapered hub flanges, find extensive use in U-tube type heat exchangers. A compre-
hensive analysis technique is herein developed to investigate the structural characteris-
tics of such joints. Design strategies to reduce stress levels in the tubesheet and the flang-
es are proposed. In particular, the concept of “controlled” metal-ta-metal contact beyond
the bolt circle between the mating surfaces is introduced and explored in depth. The solu-
tion is readily programmed on a digital computer for application in analysis oriented de-
sign evaluation and optimization studies.

In this work, our principal object is to accurately characterize the
behavior of bolted joints as they occur in tubular heat exchangers. For
purposes of illustrating the basic concepts developed here, 2 common
bolted joint used in removable bundle U-tube type heat exchangers
is considered. As shown in Fig. 1, in this construction, the tubesheet
is sandwiched between two tapered hub flanges (also called “welding
neck flanges”). Thus, the bolted joint consists of three elements,
namely two flanges and the tubesheet. A formalism to define the
structural response of the bolted joint is developed herein which can
be utilized to evaluate the design concepts aimed to maintain joint |
sealability. Furthermore, this analysis enables an in-depth study of
other important joint characteristics; e.g., bolt stress variations with
operating pressure pulsations, gasket hysteresis, etc.

Another object of this paper is to develop a solution technique to
evaluate the effect of metal-to-metal contact on the joint response.
Metal-to-meta} contact (henceforth abbreviated as MTM) at the
outer edges of the mating members may be effected during the seating
condition by suitably machining the flange faces. Even an edge contact
load under the seating condition may be induced. Or & certain edge
gap may be prescribed under the seating condition which diminishes
to zero and further develops an edge contact load as the internal joint
pressure is applied. This latter case may be labeled as “controlled”
MTM condition.

The third objective of this paper is to develop the solution technique
to evaluate the stress fields in the tubesheet and the two flanges.

A major motivation for this analysis follows from considerations
of functional performance of U-tube heat exchangers. An improperly
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TUBESIDE NOZZLE

BONNET GASKET {WITH RIB)
Flig. 1 A two tube pass removable bonnet heat exchanger

designed bolted joint may exert insufficient edge restraint on the
tubesheet (Fig. 1) during the operating condition. In those applica-
tions where the tubeside operating pressure is substantially higher
than the shellside operating pressure, the lateral deflection of the
tubesheet can develop a narrow crevice between the tubesheet and
the pass partition plates. This gap, although small in width, can cause
a measurable fraction of the tubeside fluid to “short circuit” between
the tube passes, and thus significantly derate the heat exchanger.
Further discussion of this problem may be found in a sequel to this
paper [186].

In & notable work on tubesheets for U-tube heat exchangers,
Gardner [6] gives a complete method for designing the tubesheets,
taking into account the rotational resistance offered by the tubes.
Inclusion of this effect implies that the baffle holes in the baffles
adjacent to the tubesheet are drilled to a minimum tolerance. This
assumption may be realized in a well controlled fabrication process.

However, due to the delicate nature of this assumption, we do not take
credit for the tubes, although the ASME appears to be proceeding to
incorporate it in a future edition of their pressure vessel codes [5].
Other major assumptions are:

1 The strengthening effects of the pass partition lanes in the
tubesheet and pass partition plates in the bonnet flange are ig-
nored.

2 The untubed region and the flanged portion of the tubesheet
are modeled as a ring, rather than a plate. Similarly, the flange rings
are treated by “ring theory” rather than “plate theory”.

3 The weakening effect of the bolt holes in the flanges and the
tubesheet is neglected. -

Foregoing assumptions 2 and 3 can be eliminated without con-
ceptually altering the method of analysis. However, they are intro-
duced here to simplify the treatment.

In the interest of clarity, it is perhaps most logical to first derive the
equations for the structural response of the tubesheet and the flanges,
and then describe the solution procedure to determine the boit stress,
flange and tubesheet stress fields and other quantities of interest.

The solution technique described here is applied to a typical
practical example problem in a sequel to this paper [186], wherein an
algorithm to estimate the effect of bolted joint characteristics on heat
transfer performance is also devised.

2 The Structural Model

Fig. 2 shows the mathematical model of the bolted joint. The
tubesheet is sandwiched between two flanges, which are henceforth
referred to as the “Channel (Bonnet) Flange” and “Shell Flange,”
respectively. We will refer to this assembly as a “three element joint”
in our further discussions. The bolts pass through clearance holes in

—1 OTDeDcClature.

a = tubesheet interface radius

a;" = mean radius (i = 1, channel; i = 2,
shell)

As = root area of body bolts

a* = mean radius of tubesheet rim

b’ = width of channel (; = 1), and shell flange
(i = 2) rings

B’ = bolt load per unit circumference (Fig.
2)

b = outer radius of the tubesheet and flan-
ges

¢ = radial distance between bolt center line
and gasket reaction line

D; = flexural rigidity of channel (; = 1), and
shell ({ = 2)

d; = radial distance between bolt center line
and hub center line at large end (i = 1,
channel flange; | = 2, shell flange)

E| = equivalent Young's modulus of perfo-
rated tubesheet region

E;3 = Young's modulus of tubesheet materi-
al

E; = Young’s modulus of channel (i=1),
and shell material (i = 2) i

fi = flange thickness (i = 1, channel;; = 2,
shell)

Fy = channel gasket surface pressure resul-
tant

F3 = shell gasket surface pressure resultant

F, = edge contact load per unit circumfer-
ence between channel flange and tube-
sheet

hp = ligament width

h = width of tubesheet untubed rim

K = joint stiffness (equation {44))
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Ky = bolt stiffness {equation (46))

k' = stress multiplier (equation (18.b))

£ = bolt length under prestress (unpressur-
ized condition)

m = gasket factor {defined in reference 3, p
291])

M, = radial bending moment at tubesheet
interface radius a

Mrmax = maximum radial bending moment
in tubesheet

My, My = bending moment per unit cir-
cumference at the shell-hub and hub-ring
junction, respectively (i = 1 channel, | =2,
shell)

M;, = maximum longitudinal moment in the

flange hub
n = number of bolts
P = tube pitch

P1 = channel side pressure

P2 = shell side pressure

Qo = shear force per unit circumference at the
interface between the rim and the perfo-
rated interior

Q1:, @i = shear force per unit circumference
at the hub-shell and hub-ring junctions,
respectively (i = 1 channel flange, i = 2
shell flange)

rmax = radius of the outermost tube hole
center in the tubesheet

ry = effective channel gasket radius

rq = effective shell gasket radius

ry = bolt circle radius

ry’ = mean radius of channel {{ = 1) and shell
flange rings (i = 2}

s = term representing the cumulative con-
tribution of machining of the bolted joint
elements

t; = thickness of channel (i = 1) or shell (i =
2)

t, = thickness of the tubesheet

w(r) = deflection of tubesheet with respect
tor =r; (point B in Fig. 3)

x3, xp = distance of small and large end of the
hub from the point of zero thickness (Fig.
4)

¥y = ASME code gasket seating stress

o = slope of flange hub

8; = thickness of gasket (i = 1 channel side,
t = 2 shell side)

3(r) = thickness of channel gasket rib at ra-
diusr

¢ = initial edge gap

¢1 = edge gap between channel flange and
tubesheet under pressurized condition

{(r) = gap at radius r

n = ligament efficiency

6; = rotation of channel flange ring (i = 1),
and shell flange ring (i = 2), respectively

8, = rotation of tubesheet rim

»; = Poisson’s ratio of perforated tubeshest
region

vp = Poisson’s ratio of tubesheet material

»;" = Poisson’s ratio of shell and channel
materials, respectively (i = 1, 2)

o9 = prestress (seating stress) in bolts

o = gervice bolt stress

o; = maximum bending stress in the perfo-
rated plate

o, = flange ring bending stress
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Fig. 2 Bolted joint under seating condition

the tubesheet. We assume that there are n bolts of root area A, pre-
stressed to a certain known stress level, op. It is further assumed that
the channel flange bears against the gasket on the tubesheet groove,
and it may have an initial edge gap ¢ under the “seating condition,”
or it may develop an edge contact load F, per unit circumference. The
edge gap ¢ or edge contact load F, are design options which can be
easily adjusted in a joint assembly by properly machining the
flange/tubesheet surface. The shell flange, however, is assumed to bear
totally against the gasket, i.e., it does not make metal-to-metal contact
either during the seating or the pressurized condition. This assump-
tion is not a limitation of the mathematical analysis. Rather, it is
guided by certain design considerations which are described fully in
a later section.

The mathematical model for the gasket presents the greatest
problem. A typical spiral wound gasket possesses highly nonlinear
and nonconservative loading, unloading and reloading characteristics
[7]. Furthermore, the minimum surface pressure on the gasket to
maintain a leak-tight joint depends on a host of parameters, such as
surface finish, groove clearance, gasket strip material, filler material,
loading history, properties, etc. Strictly speaking, if the stress-strain
relationship of the gasket is known, then the “exact” pressure dis-
tribution on the gasket can be determined as a function of the rotation
of the mating surfaces. Since the rotation of the mating flanges
themselves will depend on the gasket surface pressure distribution,
an iterative solution will have to be devised. In reality, however,
precise data on the gasket stiffness characteristics are seldom avail-
able. Hence, in most cases, improvement in the results by making an
accurate mathematical model of the gasket will not be realized. In view
of this, a simplified model for the gasket is assumed here. We borrow
the assumption of the ASME Code [3] that the gasket pressure re-
sultant acts at the “effective gasket diameter,” irrespective of the
flange rotations. However, the loading and unloading stiffnesses are
allowed to be an arbitrary (known) function of the compression and
decompression history.

We next proceed to set up the governing equations for the structural
response of the tubesheet and flange cross sections.

3 Tubesheet

The tubesheet contains a perforated interior in which the tube holes
are arranged in a geometric pattern on a specified pitch, P. Following
the ASME Code |3, p. 431}, the outer radius of the perforated interior
may be defined as

P-hy
4

where ro,, is the radius of the outermost tube center, and h, is the

ligament width. The ligament efficiency, n, of the perforations is de-
fined as

[ S N

(1a)

h
=B
=7 (1d)

% Used in reference [3] to indicate the condition of bolt prestress.
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Fig. 3 Freebody of the tubesheel

1t is well known [8-10] that the perforated region may be idealized
as a homogeneous, isotropic plate of modified elastic constants. The
modified elastic constants are given as function of 5, and the elastic
constants of the plate material for any given tube layout pattern.
Thus, the tubesheet is modeled as a composite plate consisting of two
concentric circular plates bonded at the interface radius a.

The outer plate is modeled as an elastic ring. In Fig. 3, Fyand F»
denote the tubeside and shellside gasket reaction resultants, respec-
tively. F. denotes the edge contact load between the channel flange
and the tubesheet. p; and p; are tubeside and shellside pressures,
assumned to act up to radii r; and rq, respectively, wherery and ro are
the effective gasket radii. Thus, the mean radius of the rim (point A
in Fig. 3) is given by

a*=0.5(a + b) (2)
and the width of the ring, h is given by
h=(b—a) (3)
Let;
pP=p1—p2 (4)

Then the shear force Qg at the rim-perforated plate interface follows
from equilibrium:

pa
I — 5)
Qo p (
Furthermore, the net moment about point 4 is given by
M=Mg——Q£ﬁ—F1(a* -'7'1) +Fe(b ~a*)

_pilri—a)2a* —r; —a)

+ Fyla* -
5 ola* —rg)
+ palre — a){(2a* —ro —a) ©)
2
Thus
M=My—x {7
where
h
x =222 4 Fia® = r1) = Fifa® = r) = Feb = a*)
+P1("l ~a)(2e* —r1—a)
2
_ palra—a)(2a® —ra - a) ®)

2

The rotation of the rim, 6,, due to M follows from elementary
strength of materials theory.
120*%(Mo — x)
* T Eht,
We will next set up the governing equations for the perforated in-

terior modeled as an equivalent solid plate in the manner described
before. The governing differential equation for axisymmetric de-

)
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flection of circular plates is well known {11]

d? 1dy sd? 1d
Gtra) Gatra) o 1)
where the plate flexural rigidity is defined as
Eqt,®
re 12(11- o) ()
The general solution of equation (10) is given by
Pré
w=71+72r2+73£nr+74rzlnr+64D1 (12)

where v;(i = 1, 4) are arbitrary constants of integration. For a solid
plate {no hole in the center) finiteness of deflection and slope atr =
0 yield v3 = v4 = 0. v; and v; are determined by the boundary con-
ditions. By appealing to continuity of slope, and traction (radial
moment) at r = a, and performing the necessary algebra, the following
results are derived.

_6a*3Mo—x) pa?

= 13
Y T Eohat,s . 32D, 13
1 pa?®
Mo= e 14
o T+, (px 5 ) (14)
where
12a*2D4(1 +
p= i DT ) (15)

Ezhatﬁ

The deflection of the tubesheet with respect to the rim is given
by

w* = vo(r? —a?) + (ri—a%) (16)

1

Thus, the deflection of the tubesheet at a radius r with respect to
point B {r = r;) is given by

w=—{r;— a)f; + w* rsa
= —(r; — r)f, rza amn
The radial bending moment M, is given by
3+ vy)pr?
M, = =2v0,(1 + vp) _ﬁ___'g_)_e_r_: rsa (18a)

16

The maximum bending stress in the perforated plate averaged
across the ligament width is given by {3, p. 435]
k' 6M

Op ™ v e

‘ L taz

where k' is the “stress multiplier” given in reference [3] as a function
of the stress ratio; and M is the larger of the radial and circumferential
bending moments. ASME design rules limit o, to 150 percent of the

allowable stress in the tubesheet material at the design tempera-
ture.

(18b)

4 Flange

The flange may be viewed as a structural member consisting of a
ring and a tapered hub butt welded to the cylindrical shell. Con-
ceptually, the operation of a tapered hub flange is quite simple. As
shown in Fig. 4, the gasket is compressed to a desired value by pre-
stressing the bolts. The tensile force in the bolts, and the surface
compression on the gasket constitute a couple which produces rotation
in the flange ring and a state of stress in the flange. When pressure
is applied, the hydrostatic end force, W, in the shell in general pro-
duces additional rotation of the flange ring, and elongation (or con-
traction) of the bolt. The surface pressure on the gasket is reduced,
and the stress field in the flange is altered. One basic objective in the
flange design is to ensure that the stress levels in the flange do not
exceed postulated allowables. The flange design methods given in the
ASME Codes [3], and several others, base the design criteria strictly
on the stress limits. Arguably, the stress limit based design methods
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do not offer any assurance of sealability; they merely protect the flange
from gross plastic deformations. A more direct measure of sealwor-
thiness of a pressurized bolted joint lies in the magnitude of the re-
sidual pressure on the gasket. The magnitude of this residual pressure
depends on numerous factors, such as flange ring rotation, bolt stretch
(or contraction), gasket stress-deformation characteristics, flange
geometry, the structural characteristics of the mating member, etc.
The mathematical complexity attendant to the calculation of the
residual pressure has presumably precluded its use as a design crite-
rion. However, a complete analysis of the bolted joint structural re-
sponse requires evaluation of the gasket residual pressure, flange
stress field and bolt stress variation. Fittingly, this subject has com-
manded the attention of numerous investigators. Reference [13]
contains an excellent synopsis and bibliography of many research
papers on this topic. Of these, the solution of Murray and Stuart [12]
appears to be the most adaptable to our needs. Murray and Stuart {12]
appeal to the classical shell and ring theories to set up an 8 X 8 linear
equation set which can be solved to determine the discontinuity
moments and shear forces at the hub-shell and hub-ring junctions.
The elastic behavior of the tapered hub is described by the formula-
tion given in reference |11, p. 488].

This analysis has two main limitations, namely;

1 The flange ring is treated by ring theory rather than plate
theory.

2 The mean diameter of the hub and the shell are taken equal to
the mean shell diameter.

These limitations, although important from a purely mathematical
viewpoint, are of minor importance for commercial units of moderate
sizes (e.g., over 20” diameter). The solution of Murray and Stuart is
extended and modified here. The important steps and results are
abstracted in the following for the sake of completeness and read-
ability. The solution given below applies to both shell and channel
flanges. We will use symbols for the generic variables without sub-
scripts in this section. In later sections, wherever a distinction is
necessary, subscripts 1 and 2 are appended to the variables to indicate
the quantities pertaining to the channel and shell flanges, respectively.
Referring to Fig. 4, the radial displacement w of the shell {positive if
directed towards the center) is given in terms of the edge shear @,
and moment M}, as [11, p. 469},

-fz
w= 28°D [8M(sin Bx — cosfx) +
2
@ cosfx] - % (1-050 (19)
where
3(1 - v2) |14
A= [ a’?t? ] (20)
and
Et3
! e 21
D=GaoA @)

The radial displacement w of the tapered hub is expressed in terms
of the longitudinal coordinate measured from the point of zero
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thickness. Thus, the thickness of the hub at the small end (equal to
the shell thickness) is

= axy (22)
where a is the rate of taper. We have

w = x"V2ephy'(e) + calo’(e) + cada’(e)

NI iy PR
e - (1 2) (23)

where

¢ = 2p x172

_ [12(1 - y'z)]m
“ a2,

¢;(i = 1-4) are constants of integration and the 's are the so called

Schleicher functions, akin to the well known Kelvin functions. The

series expansion of these functions is given in the Appendix. The

bending moment M, and shear force Q; follow by successive differ-
" entiations of equation (23). We have

(24

and

(25)

E'a8p2z /2
Q. = ﬁfﬁ; [c18a(e) + c281(6) + caSele) + caSale)]  (26)
E'a3zl/?
M, = TR [c185(e) — c28g(e) + caS7(e)
pa?a? ,
— ¢4Ss()] + m(l - 0.5/ 27)

The functions S;(¢) are combinations of Schleicher functions and
their derivatives. These are defined in the Appendix. Force equilib-
rium yields

2
rsB’ — bF, - F—%’—=o (28)

where B, F., and F are bolt load, edge force (zero for shell flange) and
gasket load per unit circumference. The rotation of the flange ring,
8, is given by

_12r2M

= 29
o (29
where the applied moment M is given by
M=M;+ -Q—;-[ + A (30)
where
Febir ~
A= _.._E.(_r._r@_).+£f(rb __r)
) ry
+ pa’’d + plr2—a'?{2r, —r —a) @1
2rp 4ry
Finally, the radial displacement of the ring at its junction with the
hub is given by:
Qg\ 2 6r'iy
w=={p+—}—— - 32
(p , ) brE/ Elblf2 ( )

By matching the displacement, slope, shear force and bending
moment at the two locations of discontinuity, eight linear algebraic

equations are obtained, which may be written in subscript notation
as
mie; =ni3i,j=1,2,...8 (33)

) The unknown vector ¢ ; consists of the four constants of integration
in equation (23), and four discontinuity reactions with the nota-
tion,

cs=Myce=Qc1=Mpea=8Q,

The nonzero elements of m;; and n; are defined as follows:
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2p i=1,2
M1 i = — Y PN )
@-ng = W gy
where
g = 2px,'1/2; 1= 1, 2

x1 and x5 are shown in Fig. 4 (hub end coordinates)

1 1
mys = E‘ﬂ’z‘b‘? Mg = = '2'53‘57
3 —
mai; = (=1y*! %5,’(6.‘); ; ; 11’2 5.4
1
mags = 'B—é',, Mo = —Mis
_ert 4r'2
mg; = E""T_b,f;: mgg = "E‘Z;f
ol o
Mgy = ‘-E’b'fy Mg = "‘m
mapoi; = (=1V+1S445(6); ; ; i: ; 3.4
s = 96p(1 — v
EoBey
masnij=Sile);  i=1,2 j=13
Mas2ij = Sj-1{6); i=1,% Jj=2,4
s = —48(1 — v'?) M = 96p{1 — v'%)
E'oPpey E’aBey
g = 80— v?) n e pa’2(1 — 0.5/)
E'ePpey E'ax?
na= pa’?(1 — 0.5¢) _.Eﬁ _ _6_r:"i\_
E'ax, bE E'bf?
ny= —-pa’¥(1—05/) 12r'2A
Eaxg® Ebf3
16pa’?p(1 - 0.5/) .
Rg+oi = —“__ET;::W; 1=1,2

Equation (33) can be solved to determine the stress and displace-
ment field in the flange for any given edge load F, pressure p and bolt
load B’. The main weakness in the above formulation lies in the
modeling of the tapered hub as a cylindrical shell of variable thickness.
The moment due to the hydrostatic end load in the shell, W, is as-
sumed to act at the ring-hub junction along the midpoint of the hub.
This, as described in reference {13}, amounts to neglecting a moment
equal to Wa(xy — x1)/2. However, the error is too small in most
practical cases to warrant any further refinement.

5 Method of Solution

The physical dimensions of the bolted joint and its elements are
assumed to be known. The bolts, n in number of root area A, each,
are assumed to be prestressed to a desired value oo. The object is to
determine the service bolt stress ¢, maximum hub and ring stresses
in the bonnet and shell flanges, maximum stress in the tubesheet, and
finally, the leakage areas formed by the deflection of the tubesheet
and the bonnet flange when the channel and shell chambers are
subjected to pressures p; and p, respectively. Within the framework
of the available data, two design parameters can be varied, namely
the prestress og, and the “initial edge gap” ¢, between the outer edges
of the bonnet flange and the tubesheet under the seating condition.
& can be varied by properly machining the faces of the bonnet flange
and/or the tubesheet beyond the gasket seating surface. We will ex-
amine the influence of these parameters on the aforementioned
quantities of interest.

The force equilibrium for the bonnet flange yields the linear gasket
force Fi° on the bonnet gasket,
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naoAb _ bF, .yo

21")’1 ry
where F, 9 is the initial edge contact force per unit circumference. Note
Fe% = 0 if ¢ > 0. Equation (34) determines the linear force on the
bonnet gasket. Let 5;° represent the compressed thickness of the
gasket under F,%, Similarly the linear compression force F on the
shell gasket follows from force equilibrium:

napdp

21"’2

Fif= (39)

F= (35)
The corresponding gasket thickness is given by 850,

Using the method described in the preceding sections, the rotations
of the bonnet flange 6,9, shell flange 65°, and tubesheet 6, can be de-
termined, i.e.,

0:° = £1(F1°, oo, F9)
620 = £5(F40, o)

030 = E;(F]G, F2O: Feo) (36)

The superscript 0 is appended to the quantities to indicate that these
pertain to the seating condition. Thus the effective bolt length under
the prestress condition, £y (Fig. 2) is given by

fo= 5+ f1sec 8,0+ iffs sec 8,°) + ¢, sec 8,0 — (ry — ry)
X sin8;® — (ry —rg) Sinﬁzo +{ro—ry) sinﬂso + 6%+ 820 (37)

For small values of 9, 8,° and 6,, equation (37} can be further sim-
plified

bo=s+fi+fott, +5,°+ 590 = (ry —ry) 6,0
+ra=r1) 8,9~ (ro —r3}65° (38)

where the term s represents the total effect of the difference between
the joint thickness at the bolt center line and that at the gasket loca-
tions.

Equation (38) defines the quantity £o. We further note that the edge
gap ¢ is given by

€0 =51+ 60~ (b—r)6,°~ 8,9 (39)

where s represents the term due to the face machining of the mating
elements. As stated before, ¢, can be set equal to a small positive
quantity (by adjusting s;). Further, ¢ can be zero, and an initial edge
contact load F, % may be developed on the channel flange-tubesheet
outer edge. In short, the initial condition at the outer edge can be
suitably prescribed. Our object now is to investigate the behavior of
the flanged joint and its constituent elements when the two chambers
are pressurized. If ¢ and F, denote the “correct” bolt stress and edge
load respectively, under this condition, then the channel gasket re-

sidual linear force F; follows from force equilibrium (equation
(28))

40
2‘!’1’1 r 2 ( )

Similarly, the residual linear force F; on the shell gasket is given
by

F, =04 _ para

(41
21’!‘2 2 )

Let &; and 3 denote the channel and shell gasket thicknesses corre-
sponding to F; and Fy, respectively. The magnitudes of 6, and &, de-
pend on the gasket stiffness characteristics, as described in section
2.

The solution procedure to determine o, F,, and other field quan-
tities, consists of two steps which may be stated as follows:

Step I. 1t is assumed a’-priori that there is no edge contact under
the pressurized condition; i.e., ¢; > 0,and F, = 0. The appropriate bolt
stress o, under this assumption, is calculated iteratively as follows.

(a) Assume o = gy, evaluate F; and F» using equations (40) and
(41), respectively (F, = 0 in equation (40)).
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(b) Compute bonnet flange ring rotation 6y, shell flange ring
rotation f,, and tubesheet rotation 8, (equation (36)), i.e.,

8 = £1{F10)
62 = £2(F3q)

b = §(Fy, Fa) 42)

{c) Evaluate §; and &; corresponding to F; and F; using the gasket
loading-unloading diagram.

{d} The effective length of the bolt £ under this condition i$ given
by equation {38).
l=8+f1:§-f2+t,+51+52"(1"1,"‘7‘1)91

+{rg=r1) 8, — (ry ~ra) By (43)

(e}  Assume another value of s (close to the value assumed in (a)),
say ¢’; and following the steps (a) through (d), compute the corre-
sponding bolt length ¢’

(f) 'The joint stiffness K is then defined as

g—d

-2
{(g) The corrected bolt length £, = (£5 + A) is then defined by
_K(fo"‘f)'f‘ o - gy

44)

A K. K (45)
where bolt stiffness K, is defined by
K, =2 46)
4
Thus the corrected bolt stress, o, is given by
g = ag+ Kp - A N (47)

If the gaskets behave as (or are modeled as) linear springs, then
egquation (47) gives the correct bolt stress. If, however, the gasket
load-deflection relationship is nonlinear, then further iteration is
necessary. In the latter case, ¢ is set equal to o in the foregoing step
{a), and the procedure is repeated. Convergence is obtained when the
assumed bolt stress s (step a) equals the corrected stress o, (step g)
within a prescribed tolerance.

Having determined the correct bolt stress, s, the remaining quan-
tities of interest, such as 6y, 8, and §;, follow from equation (42).

The edge gap ¢; under the service condition can now be deter-

mined.

1= g+ 8y — 89— (b —r)(6, — 0, — 6,° + 6,9 48)

If ¢ > 0, then the assumption for zero edge load made in the be-
ginning is verified, and the results obtained above are established to
be correct. However, if ¢; < 0, then the edge force F, and corre-
sponding bolt stress o have to be determined to satisfy the edge con-
dition of zero penetration (i.e., ¢; = 0). The method to obtain this is
described in Step II.

Step II. As determined in the foregoing, the bolt stress ¢ corre-
sponds to edge gap ¢;. The edge gap ¢ is an implicit function of ¢ and
edge force, F,, i.e.,

& = flo, Fe) (49)
Hence,
af of
=f+—| Ac+—
atda=f dole 7 OF g1 Femo ¢
Since ¢; = f and we aim to set ¢; + A¢; = 0, we have
9j
A per L] AR =g (490)
doie OF 1 Fe=0

Similarly, the computed bolt length ¢ is an implicit function of ¢
and F, (via equation (42) and (43)). Hence

¢ =glo, Fe) (50)

Transactionsg of the AQME



The bolt length £ corresponding to bolt stress o is

- (U - 0’0)(0+

14
b E

£y (50a)

Hence,
(g ~ ao)o
Ey

Thus the increments in ¢ and F, required to make 7 zero are given
by :

r=f—~p=glo, Fe)— £o— (51)

9
-7 = (—g-iq) Ao + 9%
do  Ep aF,
Equations (49a) and (51a) are solved for Ao, and AF,. Then the
corrected value of ¢ and F, are

AF,

(51a)
Fe=0

o = o+ Ao

F, = AF, (51b)

If ¢; and 7 are zero (within a specified tolerance) corresponding to
the corrected values of bolt stress and edge load, then the convergence
is achieved. Otherwise, this process is repeated, until the convergence
is obtained. The rate of convergence depends on the nonlinearity of
the gasket stress-strain curve. Convergence was obtained in 1 t0 3
iterations in the cases investigated by this author.

6 Closure

A comprehensive solution procedure to determine the stress and
displacement fields in a three element flanged joint has been devel-
oped. The method described herein can be effectively employed to
design flanged joints with precision, to maintain a predetermined
residual bearing pressure on the gasket surface under the pressurized
condition. The concept of controlled Metal-to-Metal contact on
mating flange tips has also been introduced. In a sequel to this paper
{16], this analysis technique is further utilized to evaluate the influ-
ence of the joint displacement fields on the thermal performance of
the heat exchangers. In addition, numerical study of a typical joint
is performed in that paper to demonstrate how “controlled” MTM
can be exploited to achieve certain design goals.
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APPENDIX

Schileicher Functions -
The Schleicher functions used in Section 4 are directly related to
Ber and Bei functions [15}. In the interest of completeness, their series
expansions are given below

® 29k
= = -1}k
Yilx) = ber(x) /Eo( 1) ToE
where z = 0.5x
4h+2
e hoi{a) = S (] e
Yolx) bei(x) = 3 (~1) (@ + D)

2
Ya(x) = 0.5¢3lx) — '; [Ri(x) + Yalx) - £n 8z]

where 8 = 1.78108 and

had 8'op41
R = -1 [ N ¥ 3 5
=2 D e et
Sa=32
=¥

Yalx) = 0.5¢2(x) + z [Rafx) + ¢1(x) - £n Bz]
w
where

= (2k+2)s'2k+2
Ry= T (—1)k 222 k3
2= L OV TG o

Finally the S-functions are defined as follows:
81(x) = xyalx} — 21'(x)
Salx) = 11(x) + 2¢2(x)
S3(x) = xia(x) — 2¢5'(x)
Sylx) = x¢alx) + 2¢4(x)
Ss(x) = x %7 (x) — 4xya(x) + 8¥1'(x)
Sex) = x%n'(x) = dxys(x) — 82 (x)
Sq(x) = 2%y (x) — 4xialx) + BYg'(x)
Se(x) = x%3'(x) — dxya(x) ~ 8y (x)

For small values of x, the series for Schleicher functions converge
rapidly. For large values (x > 6), asymptotic approximations given
in reference [12, p. 496] are sufficiently accurate.
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